A New Method to Optimize the Reliability of Software Reliability Growth Models using Modified Genetic Swarm Optimization

نویسنده

  • Mallikharjuna Rao
چکیده

Software reliability is one of the key attributes to determine the quality of a software system. Finding and minimizing the remaining faults in software systems is a challenging task. Software reliability growth model (SRGM) with testing-effort function (TEF) is very helpful for software developers and has been widely accepted and applied. However, each SRGM with TEF (SRGMTEF) contains some undetermined parameters. Optimization of these parameters is a necessary task. Generally, these parameters are estimated by the Least Square Estimation (LSE) or the Maximum Likelihood Estimation (MLE). However, the software failure data may not satisfy such a distribution. We investigate the improvement and application of a swarm intelligent optimization algorithm, namely Modified Genetic Swarm Optimization algorithm, to optimize these parameters of SRGMTEF. The performance of the proposed SRGMTEF model with optimized parameters is also compared with other existing models Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). The experiment results show that the proposed parameter optimization approach using Modified Genetic Swarm Optimization is very effective and flexible, and the better software reliability growth performance can be obtained based on SRGMTEF on the different software failure datasets. Also, provided comparison of ten SRGMs ( Like Goel-Okumoto Model, Delayed S-shaped Growth Model, Yamada Imperfect Debugging Models, Yamada Rayleigh Model, Inflection S-shaped Model.....etc).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of manufacturing cell using queuing theory and considering reliability

In this paper, a stochastic cell formation problem is studied using queuing theory framework and considering reliability. Since cell formation problem is NP-Hard, two algorithms based on genetic and modified particle swarm optimization (MPSO) algorithms are developed to solve the problem. For generating initial solutions in these algorithms, a new heuristic method is developed, which always cre...

متن کامل

Improving Software Reliability Growth Model Selection Ranking Using Particle Swarm Optimization

Reliability of software always related to software failures and a number of software reliability growth models (SRGMs) have been proposed past few decades to predict software reliability. Different characteristics of SRGM leading to the study and practices of SRGM selection for different domains. Appropriate model must be chosen for suitable domain in order to predict the occurrence of the soft...

متن کامل

Using the Modified Shuffled Frog Leaping Algorithm for Optimal Sizing and location of Distributed Generation Resources for Reliability Improvement

Restructuring the recent developments in the power system and problems arising from construction as well as the maintenance of large power plants lead to increase in using the Distributed Generation (DG) resources. DG units due to its specifications, technology and location network connectivity can improve system and load point reliability indices. In this paper, the allocation and sizing of di...

متن کامل

RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD

A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...

متن کامل

Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using a Robust Genetic Algorithm

In this paper the fuzzy structural reliability index was determined through modeling epistemic uncertainty arising from ambiguity in statistical parameters of random variables. The First Order Reliability Method (FORM) has been used and a robust genetic algorithm in the alpha level optimization method has been proposed for the determination of the fuzzy reliability index. The sensitivity level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016